
1/5/2019 EECS 280 Project 4: Linked List and Calculator | p4-calculator

https://eecs280staff.github.io/p4-calculator/ 1/11

p4‑calculator

EECS 280 Project 4: Linked List and Calculator

Project Due Monday, 19 Nov 2018, 8pm

Table of Contents

Project Roadmap

List Class

Writing unit tests for List

Stack Class

Postfix (RPN) Calculator

Requirements and Restrictions

Starter Code

Appendix A: What’s in a typename?

Appendix B: Project 4 Coding Practices Checklist

Project Roadmap

This is a big picture view of what you’ll need to do to complete this project. Most of the pieces

listed here also have a corresponding section later on in the spec that goes into more detail.

This project will be autograded for correctness, comprehensiveness of your test cases, and

programming style. See the style checking tutorial for the criteria and how to check your style

automatically on CAEN.

You may work alone or with a partner. Please see the syllabus for partnership rules.

Download the starter code

Use the tutorial from project 1 to get your visual debugger set up. Use this wget link

https://eecs280staff.github.io/p4-calculator/starter-files.tar.gz .

Before setting up your visual debugger, you’ll need to rename each .h.starter file to a .h file.

https://eecs280staff.github.io/p4-calculator/
https://eecs280staff.github.io/p1-stats/setup_style.html
https://eecs280staff.github.io/p1-stats/setup.html

1/5/2019 EECS 280 Project 4: Linked List and Calculator | p4-calculator

https://eecs280staff.github.io/p4-calculator/ 2/11

$ mv List.h.starter List.h
$ mv Stack.h.starter Stack.h

You’ll also need to create these new files and add function stubs.

$ touch calc.cpp

These are the executables you’ll use in this project:

List_compile_check.exe

List_public_test.exe

List_tests.exe

Stack_public_test.exe

calc.exe

If you’re working in a partnership, set up version control for a team.

Familiarize yourself with the code structure

The code structure is templated and object‑oriented, with classes representing a doubly‑linked

list and a stack.

Test and implement the ADTs

You are provided interfaces for the List and Stack classes. Test and implement these.

List : This container class is similar to the linked list discussed in the lecture, but with a few
differences: it is doubly‑linked to allow efficient inserts and deletes anywhere in the list, and it

supports an iterator. We will also evaluate your test cases for List to see how well they

expose bugs.

Stack : You will then use your List to implement a Stack , which only allows push and pop
operations from one end. This Stack class makes use of the List class, so you should

implement the List class first.

Test and implement the postfix calculator

Write and test a main() function that runs an interactive calculator program. You will use the

Stack class to implement a postfix (also known as RPN) calculator. In a postfix calculator,

operators appear after their operands, rather than in between them. For example, to compute (2 +

3) * 5, you would type 2 3 + 5 *

https://eecs280staff.github.io/p1-stats/setup_git.html#version-control-for-a-team

1/5/2019 EECS 280 Project 4: Linked List and Calculator | p4-calculator

https://eecs280staff.github.io/p4-calculator/ 3/11

Submit

Submit the following files to the autograder.

List.h

Stack.h

calc.cpp

List_tests.cpp

List Class

The member functions you have to implement are given in List.h.starter . You should copy that
file to List.h and then implement each member function. The main difference from the version

in lecture is that it is doubly‑linked. It also allows you to create an iterator and then use the iterator

to search, insert, or delete at any position in the list. Note that this is a class template, so that it

can hold data of any type. For class templates, it is necessary to give the code for member

functions inside the header file (it turns out that the compiler requires that in order to instantiate

the class, given a specific type). Therefore, there will not be a List.cpp . See the lecture slides
on how to add member functions in the header file for a class template.

You must not change the public interface of the List class, and you must use a doubly‑linked

list (i.e., nodes chained using pointers) implementation (no arrays or vectors, etc.). The basic

member functions that List provides are in List.h.starter .

You must manage memory allocation so that there are no memory leaks, etc. For example, when

adding an item, you will need to dynamically allocate the memory for a node to hold the item’s

value and the pointers to the next and previous nodes in the linked list. When removing items, you

will need to delete that previously allocated memory. The List destructor needs to ensure that

all the nodes in the linked list are deleted.

To compile and run your List tests, run the following commands:

$ make List_tests.exe
$./List_tests.exe

Since C++ only instantiates templates that are needed, we have included a simple program that

attempts to instantiate every member of the List template to make sure they compile. To

compile and run the public List compilation test, run the following commands:

$ make List_compile_check.exe
$./List_compile_check.exe

1/5/2019 EECS 280 Project 4: Linked List and Calculator | p4-calculator

https://eecs280staff.github.io/p4-calculator/ 4/11

Writing unit tests for List

You must write and submit tests for the List class. Your test cases MUST use the unit test

framework, otherwise the autograder will not be able to evaluate them. Since unit tests should be

small and run quickly, you are limited to 50 TEST() items per file and your whole test suite must

finish running in less than 5 seconds. Please bear in mind that you DO NOT need 50 unit tests to

catch all the bugs. Writing targeted test cases and avoiding redundant tests can help catch more

bugs in fewer tests.

How we grade your tests

We will autograde your List unit tests by running them against a number of implementations of

those modules. If a test of yours fails for one of those implementations, that is considered a report

of a bug in that implementation.

We grade your tests by the following procedure:

1. We compile and run your test cases with a correct solution. Test cases that pass are

considered valid. Tests that fail (i.e. falsely report a bug in the solution) are invalid. The

autograder gives you feedback about which test cases are valid/invalid. Since unit tests

should be small and run quickly, your whole test suite must finish running in less than 5

seconds.

2. We have a set of intentionally incorrect implementations that contain bugs. You get points

for each of these “buggy” implementations that your valid tests can catch.

3. How do you catch the bugs? We compile and run all of your valid test cases against each

buggy implementation. If any of these test cases fail (i.e. report a bug), we consider that you

have caught the bug and you earn the points for that bug.

Stack Class

You should complete the implementation of List (and test it) before working on Stack . The
skeleton code for Stack is given in Stack.h.starter . Copy Stack.h.starter to Stack.h . You
must only use the public interface of the List class to implement the stack. The List class

should not have any friends.

The core functions of the Stack class are push(item) , pop() , and top() . See the RMEs for

the description of these operations. Given the List type, the basic operations on a stack,

push() and pop() , are straightforward to implement. To push, you can simply add an element at
one end of the list (either end will do). To pop, you simply remove the element from the same end

1/5/2019 EECS 280 Project 4: Linked List and Calculator | p4-calculator

https://eecs280staff.github.io/p4-calculator/ 5/11

of the list. Another function is top() that simply returns the top element (as a reference to

eliminate an unnecessary copy and to allow it to be modified) without modifying the stack.

Though you will not be turning them in, you should write your own test cases for the Stack class

since the public tests are not comprehensive. Write them in a file called Stack_tests.cpp .

To compile and run your Stack tests, run the following commands:

$ make Stack_tests.exe
$./Stack_tests.exe

Postfix (RPN) Calculator

You will now use your Stack template to develop a Reverse‑Polish Notation calculator in

calc.cpp. The calculator must support integers and floating‑point values (doubles).

Important: In order for your program to produce the correct output you must set the floating‑

point precision of cout to 4 using the following line of code at the beginning of your main function:

cout.precision(4);

An RPN calculator is one in which the operators appear after their respective operands, rather

than in between them. So, instead of computing the following:

((2 ‑ 3) * 4) / (‑6)

an RPN calculator would compute this equivalent expression (note that “n” means negate):

2 3 - 4 * 6 n /

RPN notation is convenient for several reasons. First, no parentheses are necessary since the

computation is always unambiguous. Second, such a calculator is convenient to implement with a

stack. In the case above, when you see a number, you simply push it on the stack. When you see

an operator, you pop the top two values (or just one for a unary operator), apply the operator on

them, and then push the result back on the stack. In the case above, the stack would change as

follows (top value shown first):

Stack after seeing 2 : [2]

Stack after seeing 3 : [3, 2]

Stack after seeing - operator: [‑1]

1/5/2019 EECS 280 Project 4: Linked List and Calculator | p4-calculator

https://eecs280staff.github.io/p4-calculator/ 6/11

Stack after seeing 4 : [4, ‑1]

Stack after seeing * operator: [‑4]

Stack after seeing 6 : [6, ‑4]

Stack after seeing n operator: [‑6, ‑4]

Stack after seeing / operator: [0.6667]

Notice that the stack only contains numbers at all times. The operators never go on the stack.

The calculator program is invoked with no arguments, and it starts out with an empty stack. It

takes its input from the standard input stream and writes its output to the standard output stream.

Here are the commands your calculator must respond to and what you must do for each. Each

command is separated from the next one by one or more whitespace characters (including

possibly newlines).

Input Action

<some
number>

a number can be in any of the following forms:

 • one or more digits [0 – 9] (i.e. 2, 42, 900)

 • one or more digits followed by a decimal point (i.e. 2., 42., 900.)

 • zero or more digits, followed by a decimal point, followed by one or more digits

(i.e. 3.5, 2.333333, .5)

Notice that all these are non‑negative values. Push the value on the stack. The

following are examples of things that are not valid numbers for user input: ‑2, ‑0,

1,234. Only non‑negative numbers are entered (to simplify your project).

+

pop the top two numbers off the stack, add them together, and push the result

onto the top of the stack. This requires a stack with at least two operands.

Note: You should avoid making multiple calls to Stack member functions within

one statement, since the order in which operands are evaluated is undefined in

C++. For example, in the expression

expr1 + expr2

it is possible for expr2 to be evaluated before expr1 . This can result in
undefined behavior when expr1 and expr2 have side effects.

-
pop the top two numbers off the stack, subtract the first number popped from

the second, and push the result onto the top of the stack. This requires a stack

with at least two operands.

*
pop the top two numbers off the stack, multiply them together, and push the

result onto the top of the stack. This requires a stack with at least two operands.

1/5/2019 EECS 280 Project 4: Linked List and Calculator | p4-calculator

https://eecs280staff.github.io/p4-calculator/ 7/11

Input Action

/

pop the top two numbers off the stack, divide the second value popped by the

first number, and push the result onto the top of the stack. This requires a stack

with at least two operands.

Note: Your calculator must check for division by zero. If the user attempts to

divide by zero, do the following before continuing the program as normal:

 • Put the two popped elements back on the stack in their original order

 • Print an error message using exactly the following line of code:

 cout << "Error: Division by zero" << endl;

d
duplicate: pop the top item off the stack and push two copies of the number onto

the top of the stack. This requires a stack with at least one operand.

r

reverse: pop the top two items off the stack, push the first popped item onto the

top of the stack and then the push the second item onto the top of the stack (this

just reverses the order of the top two items on the stack). This requires a stack

with at least two operands.

p
print: print the top item on the stack to standard output, followed by a newline.

This requires a stack with at least one operand and leaves the stack unchanged.

c clear: pop all items from the stack. This input is always valid.

a

print‑all: print all items on the stack in one line, from top‑most to bottom‑most,

each value followed by a single space. The end of the output must be followed by

exactly one newline. This input is always valid and leaves the stack unchanged.

For an empty stack, for example, only the newline will be printed. For a stack with

two elements, say with stack contents being [47, 42] (top value shown first),

the following will be printed:

47 42 <NEWLINE>

(Where <NEWLINE> corresponds to the newline character produced by endl or

"\n").

n
negate: negate the top item on the stack. This requires a stack with at least one

operand.

q
quit: exit the calculator with a 0 exit value. This input is always valid. End‑of‑file

(e.g., typing control‑D on Linux) must also cause the calculator to exit with status

0. Note: do not call exit(0) , because it will cause memory leaks!

Each command is separated by whitespace.

1/5/2019 EECS 280 Project 4: Linked List and Calculator | p4-calculator

https://eecs280staff.github.io/p4-calculator/ 8/11

For simplicity, you can assume that you are given valid input in our tests. No error

checking on inputs to the calculator is required.

Implement your calculator in a file called calc.cpp .

To compile your calculator, you can use:

$ make calc.exe

To run your calculator interactively, you can use:

$./calc.exe

And then start typing the commands.

Negative zero

The C++ double format distinguishes between positive and negative zero. The following example

illustrates negative zero:

$./calc.exe
1 n 0 * p
-0

Your program should not do anything special for negative zero.

Requirements and Restrictions

It is our goal for you to gain practice with good C++ code, classes, and dynamic memory.

DO DO NOT

Modify .cpp files, List.h and Stack.h Modify other .h files

For List and Stack, make helper member

functions private

Modify the public interface of List or

Stack

Use these libraries: <iostream> , <string> ,
<cassert> , <sstream> , <utility>

Use other libraries

1/5/2019 EECS 280 Project 4: Linked List and Calculator | p4-calculator

https://eecs280staff.github.io/p4-calculator/ 9/11

DO DO NOT

#include a library to use its functions
Assume that the compiler will find the

library for you (some do, some don’t)

Use C++ strings Use C‑strings

Send all output to standard out (AKA stdout) by

using cout
Send any output to standard error (AKA

stderr) by using cerr

const global variables Global or static variables

Pass large structs or classes by reference Pass large structs or classes by value

Pass by const reference when appropriate “I don’t think I’ll modify it …”

Use Valgrind to check for memory errors “It’s probably fine…”

Starter Code

You can find the starter files on the course website.

File(s) Description

List.h.starter
Skeleton List class template header file without function

implementations. Rename this file to List.h and then add

your function implementations.

Stack.h.starter
Skeleton Stack class template. Rename it to Stack.h and

then add your function implementations.

List_tests.cpp Add your List unit tests to this file.

List_compile_check.cpp A “does my code compile” test for List.h

List_public_test.cpp A very small test case for List.h .

Stack_public_test.cpp A few basic test cases for Stack.h .

calc_test00.in

calc_test00.out.correct

calc_test01.in

calc_test01.out.correct

Simple test cases for the calculator program.

1/5/2019 EECS 280 Project 4: Linked List and Calculator | p4-calculator

https://eecs280staff.github.io/p4-calculator/ 10/11

File(s) Description

Makefile

A Makefile that has targets for compiling the published test

cases and your own tests. Use

$ make test

to compile and run all tests.

unit_test_framework.h

unit_test_framework.cpp
The unit test framework you must use to write your test cases.

Appendix A: What’s in a typename?

You saw the use of typename for declaring templates. When compiling your project, you may get

the following kind of error:

If you see an error message that talks about missing ‘typename’ prior to dependent type name,

simply stick in the keyword “ typename ” before the type declaration. In the instance above, it
would become:

typename List<T>::Iterator i;

The same thing would apply if you declared a loop variable. For example:

for (List<T>::Iterator i; /*...*/)

may need to become (if you get an error from the compiler):

for (typename List<T>::Iterator i; /*...*/)

Discussion of dependent types and why we have to insert the keyword typename is beyond the

scope of this course (the reason is quite subtle and deep). If you want to see some explanation,

see this article:

http://pages.cs.wisc.edu/~driscoll/typename.html

./Stack.h:94:8: error: missing 'typename' prior to dependent type name 'List<T>::Iter
List<T>::Iterator i;
^~~~~~~

http://pages.cs.wisc.edu/~driscoll/typename.html

1/5/2019 EECS 280 Project 4: Linked List and Calculator | p4-calculator

https://eecs280staff.github.io/p4-calculator/ 11/11

Appendix B: Project 4 Coding Practices Checklist

The following are coding practices you should adhere to when implementing the project. Adhering

to these guidelines will make your life easier and improve the staff’s ability to help you in office

hours. You do not have to submit this checklist.

General code quality:

Helper functions used if and where appropriate. Helper functions are designed to perform

one meaningful task, not more

Lines are not too long

Descriptive variable and function names (i.e. int radius instead of int x)

Effective, consistent, and readable line indentation

Code is not too deeply nested in loops and conditionals

Main function is reasonably short

Avoids redundant use of this keyword

Test case quality:

Test cases are small and test one behavior each.

Test case names are descriptive, or test cases are commented with a short description of

what they test.

Test cases are written using the unit testing framework.

Project‑specific quality:

Calculator operations (+, ‑, etc.) in main are implemented as helper functions.

The big three are only implemented when required.

